诶呀, 忘记作业了。貌似是数学与经济学?
大体上,数学在经济学中的运用可以分为三个不同的阶段:边际革命之前,数学开始在经济学中运用;边际革命到新古典经济学之间,数学开始显现出在经济学中运用的重要性;新古典经济学之后,数学大量运用于经济学。
一般认为,数学在经济学中的运用可以追溯到18世纪威廉·配第的《政治算术》和魁奈的《经济表》。配第试图以简单的统计分析为政治经济学提供“精确性”基础。他努力“用数学、重量和尺度的词汇表达自己想说的问题”。魁奈的《经济表》试图通过理性演绎和数学运算去发现人类社会的“自然秩序”。1826年,屠能(Johann Heinrich yon Thtinen)发表《孤立国》,首次利用了微积分和其他一些变数数学公式来表达若干经济范畴和原理,开启了运用数学模型研究问题的先河。这时,经济学家采用数学仅是作为经济理论的补充。
真正将数学运用于经济学,并且认为数学将在经济学中占有重要地位的是古诺。1838年,古诺发表了《财富理论的数学原理研究》。在该书中,他率先运用函数形式表达了商品的需求同价格之间及产量同成本之间的依存关系。例如,古诺记市场需求为d,市场价格为P,则需求作为价格的函数,就可以记为d=f(p)。古诺著作的伟大成就直到20世纪50年代之后才被充分肯定。1854年,戈森发表《交换规律的发展和人类行为准则》,极力主张应用变数数学方法,并将这种方法看作是唯一健全的经济学方法,并且运用数学建立起了“戈森定律”。戈森的数学非常好,写下了大量的数学符号、公式和图表,并且自比“经济学上的哥白尼”。
在这一时期,大量将数学运用经济学研究的还有马克思。在《资本论》中,马克思在很多地方采用采用数学语言表述自己的观点和理论,但主要足采用简单符号、具体数字以及简单的数学运算来说明不同变量之间的关系。如简单再生产和扩大再生产条件的分析门、利润率和剩余价值率关系的分析哺J、周转对利润率影响的分析哺。
边际革命的三位代表人物杰文斯、瓦尔拉斯和门格尔都强调对数学的运用,此后,埃奇沃思、马歇尔、帕累托、克拉克等采用数学方法研究经济理论有了进一步发展。
1871年,杰文斯出版《政治经济学理论》,通过四个命题,强调了数学在经济学中的重要地位:(1)经济学的本性是数学的;(2)变量无法精确测量并不妨碍经济学的数学性;(3)经济学所用方法主要是微积分;(4)数学方法是使经济学进步的必要条件。“经济学如果是一种科学,它必须是一种数学的科学。”一3同年,门格尔发表《国民经济学原理》,提出了经济学中的“边际分析法”¨0|。瓦尔拉斯曾经发表《交换的一种数学理论的原理》的论文,提出了现在的“边际效用”理论,在1874出版《纯粹经济学要义》,利用代数方程式,建构出了一套经济学的分析方法,并提出了一般经济均衡理沦,为现在意义上的数理经济学的产生奠定了基础¨¨。
此后,1881年英国经济学家埃奇沃思出版了《数学心理学》(Mathematical Psychics),试图用抽象的数学来刻画边际效用论。在这部著作中,他提出了描述商品交换的著名的“埃奇沃思方盒(EdgeworthBox)”。马歇尔最早足作为一个数学家开始学术生涯的,在其1890年出版的《经济学原理》(上下卷)中,给出现代微观经济学教科书中许多“既直观易懂、又不失数学严谨的曲线图像”。在意大利,最早作为工程师的帕累托受潘塔莱尼奥影响,完全采用数学方法研究瓦尔拉斯的一般均衡理论,提出了“帕累托最优条件”,并在1911年为《数学百科全书》撰写了以“数理经济学”为题目的文章。正是从这个时期开始,数理经济学作为一门学科的名称流传开来。在美国,边际效用学派的理沦得到了克拉克的发展和传播。1892年,作为数学家的欧文·费雪出版了《价值与价格的数学研究》,成为美国比较早采用数学方法研究经济学的学者。
新古典经济学之后,数学在经济学中大行其道,达到了专门化、技术化和职业化的程度,甚至到了登峰造极并主宰经济学的地步,数学化成为经济学发展的主流趋势。
发表评论